
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

A major barrier to development of effective therapies for Sjogren’s disease is lack of understanding of 

disease heterogeneity at the molecular level. Soret and colleagues use peripheral blood RNA 

sequencing data from 304 Sjogren’s patients to define four molecular subgroups of patients and 

subsequently annotate the groups for associated SNPs using GWAS, global methylome, comprehensive 

flow cytometry, a limited number of serum cytokines, as well as comprehensive clinical data. The 

project leverages harmonized data from the PRECISESADS Clinical Consortium, with contributions 

from multiple institutions in multiple European countries. Enrichment analyses using published gene 

modules and Ingenuity Pathways Analysis further describe the clusters. The authors then use the most 

variable transcripts to develop a composite model able to predict cluster membership. The authors 

finally present an accessible interpolation function to enable other investigators to use this prediction 

tool with their own datasets. 

This is a significant study that may advance the objective of developing effective therapies for 

Sjogren’s disease and can immediately be applied to existing clinical trial data if appropriate PBMC 

RNA-Seq data is available in order to stratify responses by subgroup membership. The data and 

harmonization across centers, quality control and analyses in general appear to be robust. Extensive 

supplementary data and methods support the findings. 

There are concerns and limitations of the study that should be more carefully considered (Points 1, 2, 

4). Some of the results are over-simplified (Point 5). There are several more minor edits that could be 

made to enhance clarity. 

1. The composite predictive model was developed/trained using the smaller inception cohort then 

tested on the larger cross-sectional cohort. Yet, the approach used to select which genes were to be 

used in the composite predictive model utilized RNA-Seq data from all of the subjects. Whether this 

constitutes a true test of the model is thus unclear. The study would be further strengthened by 

testing the composite predictive model using data from different subjects that were not used to 

develop the model. In their favor, the authors have facilitated the capacity of others to test the model 

in their own datasets. 

2. Cluster 1 is enriched in disease-associated SNPs (n=35). To what extent if any do eQTLs explain the 

gene expression responsible for delineating this cluster? 

3. Figure 2 is unclear. In particular, the color scheme in Figure 2B is too complex (too many colors). 

The authors may consider using letters of the alphabet in lieu of colors. The white boxes in Figure 2A 

are not adequately described. X axes (1-42) in Figure 2A are not adequately described. Annotation of 

the most important features of Figure 2A with the abbreviations in Figure 2B would be helpful. The 

Supplementary Figure 5, on the other hand, is clear and easy to interpret. 

4. A limitation of the study includes the use of data only from peripheral blood. This is mentioned in 

the Discussion. This limitation affects interpretation of some of the results. For example, on lines 327-

329, the authors seem to suggest that a reduction of peripheral blood pDC is incongruent with the 

notion that pDC are thought to be the major interferon alpha producers. The authors do not consider 

published data showing that pDC are enriched in the salivary glands of Sjogren’s patients and the 

possibility that tissue sites may be the major source of interferon alpha in these individuals. 

5. There is considerable overlap of interferon signatures among Clusters 1, 2 and 4. The description of 

Cluster 4 as “rather of Type II” interferon cluster (Abstract line 61) is an oversimplification, as this 

cluster also contains strong enrichment of Type 1 interferon modules. Similarly, characterization of 

Cluster 3 as the B lymphocyte patient cluster may be over-simplified. Other clusters show some 

enrichment in B cell features, including IPA B cell signaling pathways (also enriched in Clusters 1 and 

4, Suppl Table 2), hypergammaglobulinemia (high in Clusters 1 and 3), elevated RF (also observed in 

Cluster 1), circulating free light chains (elevated in all clusters vs. HV), SSA/SSB positivity (prevalent 

in Clusters 1 and 3), ESSDAI biological domain (elevated in Clusters 1 and 3). Over-simplifying 

description of the patient clusters could unintentionally create confusion in the field. 

6. Provision of complete lists of differentially expressed genes would be desirable to enhance 

accessibility of the study results. 



7. Mention of 2016 ACR/EULAR criteria in the opening sentence of the Results section is confusing, as 

the Methods state that AECG criteria were used for this study. 

8. A clear definition of disease duration used in Table 1 is needed. Is this from date of diagnosis or 

date of first symptom(s), as both fields of data are listed in the Supplementary Methods? 

9. Inclusion of Healthy Volunteer data in Figure 6C would be helpful. 

10. Figure 5B colors denoting 5’UTR and IGR and difficult to distinguish. 

11. In Suppl Figure 6, the significance designations in the figures are too small to be legible. These 

should be enlarged or the data presented in tables. 

12. In Suppl Figure 13, whether the flow cytometry items utilize frequency or absolute number data is 

unclear. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

In the manuscript “A new molecular classification to drive precision treatment strategies in primary 

Sjögren’s syndrome”, the authors performed a comprehensive molecular profiling of patients with pSS 

by analyzing transcriptomics data with a semi-supervised robust approach and discriminated 4 

clusters. Analysis of additional omics (GWAS, methylome), biological features (flow cytometry, serum 

cytokine expression), and clinical characteristics (PGA, ESSDAI, ESSPRI, and several serological 

parameters) were assessed to further validate the clusters and establish their functionality. Based on 

findings above, a composite model was set up to predict the belonging of a patient to one of the 4 

clusters. The manuscript is well organized and clearly structured, although several questions are 

needed to be answered to make it more clinically relevant and valuable. 

 

1. In the manuscript, serum IFN-alpha was not associated with ESSDAI. No significant differences 

were seen between the 4 clusters as well, although a lower mean score was observed in C2 and the 

highest score seen in C4. This might be due to the insufficiency of the global ESSDAI score to exhibit 

the heterogeneity of pSS. I would like to know more about the situation when we look at each domain, 

which may show a better picture and connections between different molecular signatures and systemic 

involvements. 

2. A previous study published in Lancet Rheumatol, as also mentioned by the authors and listed as 

Reference No. 41, has proposed a symptom-based stratification method to exploit the heterogeneity 

of pSS. Four subgroups were identified as Low symptom burden (LSB), High symptom burden (HSB), 

dryness dominant with fatigue (DDF), and Pain dominant with fatigue (PDF). Of note, IFN signaling 

pathway was proposed to be the most significant signature in pSS patients, which is consistent to this 

manuscript. At the level of individual transcriptomic modules, IFN module activity scores were highest 

in the LSB subgroup, followed by DDFsubgroup. However, DDF subgroup had high activity score for 

mature B-cell modules, which discriminated it from LSB. It appears LSB and DDF subgroup share 

somewhat similar features with C1 and C3 respectively. However, in this manuscript, no significant 

difference was seen between the 4 clusters for both the global ESSPRI score and its 3 components. 

The authors should explain the discrepancy between the 2 stratification methods, and how we can 

implement the finding into precision treatment strategies the most? 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors propose a molecular classification of primary Sjögren's syndrome (pSS) that consists of 

four subgroups and is primarily developed from transcriptomics data. The subgroups were developed 

by a previously developed semi-supervised clustering method. The data set consisted of 304 cases 

and 330 controls and a 75%/25% derivation/validation split was used for development of the clusters. 

 

Face validity and properties of the four clusters were examined using a range of molecular and clinical 



data that were not used in deriving the clusters. Examination of 257 top genes discriminating genes 

showed that three of the clusters were enriched in IFN signaling, lymphoid lineage pathways, and 

inflammatory & myeloid lineage transcripts respectively. Analysis of other molecular data including 

GWAS, methylation, peripheral blood counts from flow cytometry, and cytokines were done to identify 

differences in these data types among the clusters. Further analysis of clinical symptoms and 

serological characteristics showed differences among the clusters. 

 

To be able to classify a future patient, the authors developed a composite predictive model with 

xgboost-tree from the genes that were found to discriminate among the clusters based on the Boruta 

algorithm. A step model was developed where the first model consists of 3 classification trees 

composed of 10 genes and is used to predict C4 vs. not-C4. If the patient does not belong to C4 

cluster, a second model consisting of classification trees composed of 31 genes is applied to predict 

C1, C2 or C3 clusters. The composite model when applied to the derivation data set performed well 

with accuracy >95%. The predictive model was also applied to an independent cohort of 37 pSS 

patients to predict cluster membership. 

 

The data sets, clustering and development of the predictive model are described in adequate detail, 

and the experimental protocol of using 75/25 derivation/validation split is appropriate. Model 

performance is primarily evaluated using accuracy and is appropriate. The conclusions from the 

modeling analyses and data interpretation are valid and reliable. 

 

The following minor suggestions can improve the manuscript: 

 

1. Is there a reason why the predictive model was not evaluated on the validation data set? 

 

2. Consider reporting the area under the Receiver Operating Characteristic curve for the predictive 

model. Four separate ROC curves can be reported, one for each cluster vs. the rest. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

This is a high quality multi-institutional analysis of SS patients a complex multi-factorial diseases. The 

authors used RNA seq and other multi-omic data to identify & validate 4 subtypes. 

 

 

Can the authors elaborate if any previous studies have done any work on subtyping this syndrome 

using any or a subset of the data types that is collected here? So expression, methylation, SNPs, flow 

or cytokins. 

 

The methylation analysis appears somewhat arbitrary using the Delta-beta threshold of 0.075, how 

was this threshold chosen? Is there any data that supports the choice of this threshold, and how 

dependent are the results on this threshold? 

Next on line 271 another threshold is defined at 0.15, any explanation why these two thresholds are 

needed and how this 2nd analyses differs from the first one? 



We would like to thank the associate editor of Nature Communications for considering our 
manuscript entitled “A new molecular classification to drive precision treatment strategies in 
primary Sjögren’s syndrome” for publication in Nature Communications and for the 
opportunity to resubmit a revised version for further consideration. 

We are deeply grateful for the considerable efforts on the part of the reviewers to assess the 
manuscript thoroughly and for their critiques. The positive consideration given by the four 
reviewers and their thoughtful suggestions are much appreciated. 

We have made the necessary changes and addressed the issues raised by the reviewers and 
would like to highlight in a point-by-point manner the changes made and how raised issues 
and concerns were addressed. 

Reviewer #1 

1- The composite predictive model was developed/trained using the smaller inception cohort 
then tested on the larger cross-sectional cohort. Yet, the approach used to select which 
genes were to be used in the composite predictive model utilized RNA-Seq data from all of 
the subjects. Whether this constitutes a true test of the model is thus unclear. The study 
would be further strengthened by testing the composite predictive model using data from 
different subjects that were not used to develop the model. In their favor, the authors have 
facilitated the capacity of others to test the model in their own datasets. 

We thank the reviewer for this comment that helps us to understand that our description of 

the algorithm’s training might be unclear. 

We confirm, as well understood by reviewer 3, that we have used patients from the cross-

sectional cohort to train the predictive model. This cohort was initially divided into discovery 

and validation subgroups to respectively determine and confirm the different clusters. The 

process for the development of the composite model begins with a training phase on the 

validation subgroup (77 patients).  Next, we have evaluated the model on the discovery 

dataset (227 patients), consisting of patients who were not seen in the training phase. Once 

we achieved satisfactory precision on this evaluation dataset (>95%) we have run the model 

on the new inception cohort to see how well the algorithm can perform on patients who were 

not part of the cross-sectional cohort. Our main objective there was to provide additional 

evidence that the predictive model didn’t overfit during the training phase and can be used 

on an external dataset. We understand that reviewer 1 is also concerned by the approach we 

used to perform our genes selection. Before the training phase of the composite model, we 

performed dimensional reduction of our dataset using the patients from the discovery and 

validation cohorts. As stated in the supplementary materials, the dimensional reduction of our 

dataset is composed of the following steps: 1-we first identified 1154 genes differentially 

expressed (DEGs) in the 4 clusters; 2-we used the Boruta algorithm [Kursa, 2010] to select 

genes that contribute the most to differentiate these clusters; 3-we finally found 255 candidate 

genes to train the C4 model and 597 candidate genes to train the C1-C2-C3 multiclass 

prediction model. This step is part of the data preprocessing framework, reducing the number 

of variables describing our patients and allowing us to be more robust to overfitting. The genes 



selected to represent the patients at this step are not the genes picked by the model at the 

end of its training but they represent a simplification of our dataset to optimize the model’s 

training process. The 40 genes selected during the training phase of the composite model 

were selected based only on the patients from the validation cohort (and validated on the 

discovery cohort). Finally, once the model was fully trained (on the validation cohort) and 

validated (on the discovery cohort), we tested it on the patients from the inception dataset, 

that were neither used in the training/validation operation and in the first dimensional 

reduction operation. 

Kursa, M. B. & Rudnicki, W. R. Feature Selection with the BorutaPackage. J Stat Softw. 36, 11 (2010) 

 

2. Cluster 1 is enriched in disease-associated SNPs (n=35). To what extent if any do eQTLs 

explain the gene expression responsible for delineating this cluster? 

We thank the reviewer for this question. In order to respond to the reviewer question, we used the 

snp-nexus database (https://www.snp-nexus.org/) and select all genes nearby the 35 SNPs. Comparing 

them to the DEGs in C1, only two genes, coding HLA-C and PSMB9, were differentially expressed 

(FC=1.54 and 1.52 respectively). Then we decided to test the gene coding HLA-C and PSMB9 with the 

R package MatrixEQTL [Shabalin, 2016]. We focused solely on cis-eQTLs because we lacked substantial 

power for trans-eQTLs studies. We adjusted for age and sex and the output p-value was fixed at 10-5 

and the cis distance at 1Mb.  Then we found 16 eQTLs associated with this gene (Table below) and 

none for PSMB9:  

gene snps pvalue FDR beta 

HLA-C rs2247056 5.05E-41 1.15E-38 0.596766125 

 rs2734583 6.29E-26 4.78E-24 0.647025982 

 rs2523544 1.29E-18 5.88E-17 0.447730609 

 rs3094228 5.51E-14 1.80E-12 0.342977871 

 rs2394895 7.96E-13 1.81E-11 0.327856995 

 rs3132935 9.93E-13 2.06E-11 0.348801633 

 rs887468 1.75E-10 1.79E-09 0.275189105 

 rs3130473 2.56E-10 2.43E-09 0.281941851 

 rs2517576 9.03E-10 7.63E-09 0.302104793 

 rs3095151 4.39E-09 3.45E-08 0.301586516 

 rs3115663 4.54E-09 3.45E-08 0.291662834 

 rs3094112 4.14E-08 2.48E-07 0.269487605 

 rs3094122 1.12E-07 6.37E-07 0.256320602 

 rs3130467 1.19E-07 6.62E-07 0.235649231 

https://www.snp-nexus.org/


 rs3094220 2.39E-07 1.30E-06 0.245553166 

 rs3130347 1.18E-06 5.62E-06 0.24516001 

 

Shabalin, A.A. Matrix eQTL:Ultra fast eQTL analysis via large matrix operations. Bioinformatics, 28, 

10, 1074-1082 (2016).  

 

3. Figure 2 is unclear. In particular, the color scheme in Figure 2B is too complex (too many 

colors). The authors may consider using letters of the alphabet in lieu of colors. The white 

boxes in Figure 2A are not adequately described. X axes (1-42) in Figure 2A are not 

adequately described. Annotation of the most important features of Figure 2A with the 

abbreviations in Figure 2B would be helpful. The Supplementary Figure 5, on the other 

hand, is clear and easy to interpret. 

We agree with the reviewer comment and have inverted Figure 2 and supplementary Figure 

5. Therefore, the new Figure 2 corresponds to the previous supplementary Figure 5 and the 

previous Figure 2 is now the new supplementary Figure 5. We have, as requested by the 

reviewer, clarified the new supplementary Figure 5 legend. The new legend is as follows: 

Supplementary Figure 5: Fingerprint grid plots mapping transcriptome repertoire 

perturbations across the four pSS clusters. A collection of 16 transcriptome datasets spanning 

a wide range of immunological and physiological states were used as input to construct a 

module repertoire (Altman, 2020). Each dataset was independently clustered via k-means 

clustering. Gene co-clustering events were recorded in a table, where the entries indicate the 

number of datasets in which co-clustering was observed for a given gene pair. The co-

clustering table served as the input to a weighted co-clustering graph, where the nodes 

represent genes and the edges represent co-clustering events. The largest, most highly 

weighted sub-networks among a large network were identified mathematically and assigned 

a module ID. The genes constituting this module were removed from the selection pool and 

the process was repeated, resulting in the selection of 382 modules constituted by 14,168 

transcripts. The modules were arranged onto the grid as follows: the master set of 382 

modules was partitioned into 38 clusters (or aggregates) based on similarities among their 

module activity profiles across the sixteen reference datasets (A1-A38). A subset of 27 

aggregates comprising 2 modules or more in turn occupied a line on the grid. The length of 

each line was adapted to accommodate the number of modules assigned to each cluster. 

Changes in transcript abundance at the module level were mapped onto this grid and 

represented by color spots of varying intensity. (a) Changes in blood transcript abundance in 

subjects from each cluster compared to healthy volunteers (HV) with a fold change cut-off = 

1.5 and a FDR adjusted p-value < 0.05 are represented on the fingerprint grid plot. The 

modules occupy a fixed position on the fingerprint grid plots. An increase in transcript 

abundance for a given module is represented by a red spot; a decrease in abundance is 

represented by a blue spot. Modules arranged on a given row belong to a module aggregate 

(here denoted as A1 to A38). Changes measured at the “aggregate-level” are represented by 

spots to the left of the grid next to the denomination for the corresponding aggregate. The 



colors and intensities of the spots are based on the average across each given row of modules. 

A module annotation grid (b) is provided where a color key indicates the functional 

associations attributed to some of the modules on the grid. Positions on the annotation grid 

occupied by modules for which no consensus annotation was attributed are colored white. 

Positions on the grid for which no modules have been assigned are colored grey. 

 

 

4. A limitation of the study includes the use of data only from peripheral blood. This is 

mentioned in the Discussion. This limitation affects interpretation of some of the results. For 

example, on lines 327-329, the authors seem to suggest that a reduction of peripheral blood 

pDC is incongruent with the notion that pDC are thought to be the major interferon alpha 

producers. The authors do not consider published data showing that pDC are enriched in the 

salivary glands of Sjogren’s patients and the possibility that tissue sites may be the major 

source of interferon alpha in these individuals. 

Again, we totally agree with the reviewer concern. We therefore took up the point raised by 

the reviewer and incorporated it into our discussion. We have then added another reference 

on pDCs (new reference 45: Hillen et al. Front immunol, 2019). 

 

5. There is considerable overlap of interferon signatures among Clusters 1, 2 and 4. The 

description of Cluster 4 as “rather of Type II” interferon cluster (Abstract line 61) is an 

oversimplification, as this cluster also contains strong enrichment of Type 1 interferon 

modules. Similarly, characterization of Cluster 3 as the B lymphocyte patient cluster may be 

over-simplified. Other clusters show some enrichment in B cell features, including IPA B cell 

signaling pathways (also enriched in Clusters 1 and 4, Suppl Table 2), 

hypergammaglobulinemia (high in Clusters 1 and 3), elevated RF (also observed in Cluster 

1), circulating free light chains (elevated in all clusters vs. HV), SSA/SSB positivity (prevalent 

in Clusters 1 and 3), ESSDAI biological domain (elevated in Clusters 1 and 3). Over-simplifying 

description of the patient clusters could unintentionally create confusion in the field. 

We agree with the reviewer that the clusters’ description we proposed as a summary of their 

complete pathway analysis is over-simplified and may impair the content of our messages. In 

this work, we have tried to highlight the molecular features that can best characterized each 

independent cluster knowing that there is a continuum in the molecular abnormalities 

observed in pSS. Hence, we have modified the text to more precisely reflect the different 

facets that characterize our clusters. Of note, the description of the clusters was transferred 

from the abstract to the “introduction” section when reducing the abstract length in line 

with the Nature publishing rules. The clusters are now described as follows in the 

“introduction” and in the “discussion” sections. 

“The Cluster 1 (C1), C3 and C4 display a high interferon (IFN) signature reflecting the 

pathological involvement of the IFN pathway, but with various Type I and II IFN gene 

enrichment. C1 has the strongest IFN signature with both Type I and Type II gene enrichment 

when compared to C3 (intermediate) and C4 (lower). C4 has a Type II gene enrichment 



stronger than Type I and equivalent to C3 while C3 has the opposite composition. C2 exhibits 

a weak Type I and Type II IFN signature with no other obvious distinguishable profile relative 

to HV. We further characterized C1, C3 and C4 using multi-omics and clinical data. C1 

patients present a high prevalence of SNPs, C3 patients an involvement of B cell component 

more prominent than in the other clusters and especially an increased frequency of B cells in 

the blood while C4 patients have an inflammatory signature driven by monocytes and 

neutrophils, together with an aberrant methylation status” 

 

6. Provision of complete lists of differentially expressed genes would be desirable to enhance 

accessibility of the study results. 

We thank the reviewer for having raised this point. Complete lists instead of top 100 of 

differentially expressed genes have been added in supplementary Table 1. 

 

7. Mention of 2016 ACR/EULAR criteria in the opening sentence of the Results section is 

confusing, as the Methods state that AECG criteria were used for this study. 

 

We thank the reviewer for having raised this point. The AECG criteria were indeed used to 

include patients in the study. The text has been modified accordingly. 

 

8. A clear definition of disease duration used in Table 1 is needed. Is this from date of 

diagnosis or date of first symptom(s), as both fields of data are listed in the Supplementary 

Methods? 

The disease duration has been calculated as the time between the date of the first 

symptoms (or date of disease onset) and the date of the visit where all data used in this 

work were collected. 

The clinical data section of the Supplementary Materials was modified to confirm that the 

date of disease onset was only recorded. The date of diagnosis was not considered relevant 

for the purpose of this work as the diagnosis may be done significantly after the first 

molecular disturbances occur. 

 

9. Inclusion of Healthy Volunteer data in Figure 6C would be helpful. 

We thank the reviewer for having raised this point. The Figure 6C shows results from a one-

way ANOVA between clusters and HV. The significance between the cluster and HV is 

represented by a p-value and the direction of the association is shown as the z-score. We 

have modified the legend accordingly. 

 

10. Figure 5B colors denoting 5’UTR and IGR and difficult to distinguish. 



We thank the reviewer for having raised this point. The color denoting IGR has been 

modified in Figure 5B. 

 

11. In Suppl Figure 6, the significance designations in the figures are too small to be legible. 

These should be enlarged or the data presented in tables. 

We thank the reviewer for having raised this point. We have enlarged the figure. 

 

12. In Suppl Figure 13, whether the flow cytometry items utilize frequency or absolute 

number data is unclear. 

We thank the reviewer for having raised this point. The flow cytometry items utilize 

frequency. We have modified the legend accordingly. 

 

 

 

Reviewer #2  

 

 

1. In the manuscript, serum IFN-alpha was not associated with ESSDAI. No significant 

differences were seen between the 4 clusters as well, although a lower mean score was 

observed in C2 and the highest score seen in C4. This might be due to the insufficiency of 

the global ESSDAI score to exhibit the heterogeneity of pSS. I would like to know more 

about the situation when we look at each domain, which may show a better picture and 

connections between different molecular signatures and systemic involvements. 

 

We thank the reviewer for this comment. We confirm that we have explored this aspect. 

Although the serum IFN-alpha was not associated with global ESSDAI, we analyzed its 

association with each domain of ESSDAI (Glandular, Articular, Cutaneous, Respiratory, Renal, 

Muscular, Peripheral nervous, Central nervous, Hematological and Biological). 

A cut-off has been fixed at the LOD (correspond to mean (HV) + 2SD (HV)) to characterize 42 

patients (54%) with high levels of IFN-alpha (hi-IFNα) and 36 patients (46%) with low levels of 

IFN-alpha (lo-IFNα). 

Through a first univariate analysis (Fisher-exact test) we identified an association of the IFNα 

levels with the hematological (p=0.004) and the biological (p=0.004) domains. Actually, there 

was an over-representation of patients with a positive hematological domain (26%) and 

patients with a positive biological domain (52%) in the hi-IFNα population. All results are 

present in the Table below. These findings are reflecting the clusters’ characteristics observed 

when analyzing independently the different items of the hematological and biological 

domains of ESSDAI. Hyperglobulinemia, high levels of antinuclear antibodies, reduced C4 and 



lymphopenia characterized C1 patients and in a lesser extent C3 patients who presented the 

higher IFN signature (Figure 6 and Table 2).  

The second multivariate analysis (PLS-DA) did not allow to extract other association between 

IFN-alpha and ESSDAI domains. 

This point raised by the reviewer has been added in the “Results” section. 

  hi-IFNα 
(n = 42) 

lo-IFNα 
(n = 36) 

p-value 

Glandular n (%) 9 (21) 5 (14) 0,555 

Articular n (%) 14 (33) 12 (33) 1 

Cutaneous n (%) 3 (7.1) 0 (0) 0,245 

Respiratory n (%) 4 (9.5) 4 (11) 1 

Renal n (%) 2 (4.8) 0 (0) 0,496 

Muscular n (%) 0 (0) 0 (0) - 

Peripheral nervous n (%) 3 (7.1) 4 (11) 0,697 

Central nervous system n (%) 1 (2.4) 1 (2.8) 1 

Hematological n (%) 11 (26) 1 (2.8) 0,004 

Biological n (%) 22 (52) 7 (19) 0,004 

n: number of patients with available information 

Statistical tests performed: fisher-exact test of independence for categorial variable 

 

 

2. A previous study published in Lancet Rheumatol, as also mentioned by the authors and 

listed as Reference No. 41, has proposed a symptom-based stratification method to exploit 

the heterogeneity of pSS. Four subgroups were identified as Low symptom burden (LSB), 

High symptom burden (HSB), dryness dominant with fatigue (DDF), and Pain dominant 

with fatigue (PDF). Of note, IFN signaling pathway was proposed to be the most significant 

signature in pSS patients, which is consistent to this manuscript. At the level of individual 

transcriptomic modules, IFN module activity scores were highest in the LSB subgroup, 

followed by DDFsubgroup. However, DDF subgroup had high activity score for mature B-

cell modules, which discriminated it from LSB. It appears LSB and DDF subgroup share 

somewhat similar features with C1 and C3 respectively. However, in this manuscript, no 

significant difference was seen between the 4 clusters for both the global ESSPRI score and 

its 3 components. The authors should explain the discrepancy between the 2 stratification 

methods, and how we can implement the finding into precision treatment strategies the 

most? 

 

In pSS, previous studies from the same group than Ref 41 (now Ref 42 in the revised version 

of the manuscript) have also shown that higher pro-inflammatory cytokine levels (IP-10, 

TNFα, IFNα, IFN-γ, and LT-α) were associated with lower patient-reported fatigue (Davies, 

2019) and that therapeutic effects of RSV-132 (a new RNAses compound) resulted in a 

significant improvement of fatigue correlated with the increased expression of IFN-

stimulated gene (Posada, 2020). However, analysis of IFN-stimulated gene expression did 

not find any correlation between the IFN modular score and fatigue in another pSS dataset 



(Seguier, 2020). Finally, in another study, pSS patients with an IFN signature reported a 

better quality of life that those without (Bodewes, 2020). Importantly, in the last study, 

patients treated with hydroxychloroquine displayed a decreased IFN signature with no 

benefit on fatigue (Bodewes, 2020). Therefore, the observations are often discordant. 

We agree with the reviewer that there are some similarities between the clusters described 

by Tarn et al (ref 41) and our clusters concerning the IFN signature. Thus, C1 is close to the 

LSB cluster, C2 to the PDF cluster, C3 to the DDF cluster and C4 to the HSB cluster as 

described in the figure below. 

 

In order to respond to the reviewer question, we grouped our patients according to the 

symptom-based classification proposed in reference 41. However, we do not have, in our 

cohort, data concerning depression and anxiety. Therefore, the stratification is biased and is 

based only on data from the ESSPRI regarding dryness, fatigue and pain. 

 

Characteristics N C1, N = 561 C2, N = 431 C3, N = 301 C4, N = 211 p-value2 

DDF 150 22 (39%) 12 (28%) 13 (43%) 9 (43%) 0.5 

HSB 150 14 (25%) 12 (28%) 10 (33%) 3 (14%) 0.5 

LSB 150 17 (30%) 10 (23%) 6 (20%) 3 (14%) 0.5 

PDF 150 3 (5.4%) 9 (21%) 1 (3.3%) 6 (29%) 0.005 

Characteristics N DDF, N = 561 HSB, N = 391 LSB, N = 361 PDF, N = 191 p-value2 

C1 150 22 (39%) 14 (36%) 17 (47%) 3 (16%) 0.14 

C2 150 12 (21%) 12 (31%) 10 (28%) 9 (47%) 0.2 

C3 150 13 (23%) 10 (26%) 6 (17%) 1 (5.3%) 0.3 

C4 150 9 (16%) 3 (7.7%) 3 (8.3%) 6 (32%) 0.083 
1 Statistics presented: n (%) 

2 Statistical tests performed: chi-square test of independence; Fisher's exact test 

 

 



We were not able to find any enrichment of one of our four clusters in any of the subgroups 

proposed in reference 41. 

However, the positive and quite unique aspect of our approach is that it will allow the 

Newcastle team who published reference 41 to answer the reviewer's question because we 

are proposing, for the first time, the means of predicting the membership of patients from 

this cohort to one of the 4 clusters that we have identified. It is therefore impossible at this 

stage to say that there are discrepancies between our study and the one published in Lancet 

Rheumatol. Our group is actually involved in an IMI2 European project called NECESSITY 

aiming at identifying new response criteria to treatment in the context of pSS. We will then 

have access to many different cohorts comprising ASSESS and UKPSSR used in the reference 

41 paper and expect to have the opportunity to do such analysis. 
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Bodewes ILA, Gottenberg JE, van Helden-Meeuwsen CG, Mariette X, Versnel MA. Hydroxychloroquine 

treatment downregulates systemic interferon activation in primary Sjögren's syndrome in the JOQUER 

randomized trial. Rheumatology (Oxford). 2020;59(1):107-111. 

 

Reviewer #3  

 

The data sets, clustering and development of the predictive model are described in 

adequate detail, and the experimental protocol of using 75/25 derivation/validation split 

is appropriate. Model performance is primarily evaluated using accuracy and is 

appropriate. The conclusions from the modeling analyses and data interpretation are valid 

and reliable. 

We thank the reviewer for his/her comment on our methodology procedure. 
 

1. Is there a reason why the predictive model was not evaluated on the validation data 

set?  

In fact, we have also evaluated the predictive model in the validation dataset where we 

achieved 92% of accuracy. However, we have focused, in the text the evaluation of the 

predictive composite model on the discovery dataset (95%) which is composed of a higher 

number of patients. 

 

2. Consider reporting the area under the Receiver Operating Characteristic curve for the 

predictive model. Four separate ROC curves can be reported, one for each cluster vs. the 



rest.  

 

We thank the reviewer for the proposal. Adding four separate ROC curves would serve the 

description of the model's performance. Unfortunately, due to the nature of our model, only 

the ROC curve for C4 could be accurately reported. 

 

Indeed, in a first step, the composite model assesses the probability that a patient belongs to 

C4. Then, in a second step, and only if probability of belonging is small, the second part of the 

model is launched and the probabilities of belonging for C1, C2 and C3 are calculated assuming 

that the probability for C4 belonging is 0, which is not the case at the first step. Therefore, for 

C1, C2 and C3, any probability value of belonging to one specific group versus all other would 

be an approximation. We fear that this approximation could mislead the reader in 

understanding the composite model and this is why we have preferred a representation of 

the performance of the algorithm by using a confusion matrix. 

 

 

 

Reviewer #4  

1- Can the authors elaborate if any previous studies have done any work on subtyping this 



syndrome using any or a subset of the data types that is collected here? So expression, 

methylation, SNPs, flow or cytokins.  

To our knowledge, we report herein on the largest ever molecular profiling study carried out 

in primary Sjögren’s syndrome patients and compared to healthy volunteers, using high-

throughput multi-omics data (genetic, epigenomic, transcriptomic, combined with flow 

cytometric data, multiplexed cytokines, as well as classical serology).  

 There were some publications reporting on patient stratification attempts. Most of them 

were based on gene expression data with a focus on the IFN pathway involvement. The team 

of Bodewes et al. (Ref 1) described patient subgroups according to their IFN pathway 

involvement with specific attention to Type I and Type II gene enrichments. James et al. (Ref 

2) found three clusters using gene expression microarray characterized by different levels of 

IFN and inflammation. Davies et al. (Ref 3) proposed a stratification based on absolute cell 

counts and lastly Tarn et al. (Ref 4) described patient clinical phenotypes characterized a 

posteriori at the molecular level with gene expression data. These works provide good basis 

for building a molecular taxonomy of Sjogren disease. Our integrative approach using multi-

omics and patient clinical characteristics allows going further in understanding the Sjogren 

disease heterogeneity. 

We have described shortly these studies in the “discussion” part and added the 

corresponding references.  

1-Bodewes, I. L. A. et al. Systemic interferon type I and type II signatures in primary Sjögren's syndrome reveal 

differences in biological disease activity. Rheumatology (Oxford) 57, 921-930 (2018).    

2-James, J. A. et al. Unique Sjögren's syndrome patient subsets defined by molecular features. Rheumatology 

(Oxford) 59, 860-868 (2020).   

3-Davies R et al. Patients with Primary Sjögren's Syndrome Have Alterations in Absolute Quantities of Specific 

Peripheral Leucocyte Populations. Scand J Immunol. 86, 491-502 (2017). 

4-Tarn, J. R. et al. Symptom-based stratification of patients with primary Sjögren’s syndrome: multi-dimensional 

characterisation of international observational cohorts and reanalyses of randomised clinical trials. Lancet 

Rheumatol.1, e85–94 (2019). 

 

2- The methylation analysis appears somewhat arbitrary using the Delta-beta threshold of 

0.075, how was this threshold chosen? Is there any data that supports the choice of this 

threshold, and how dependent are the results on this threshold?  

Next on line 271 another threshold is defined at 0.15, any explanation why these two 

thresholds are needed and how this 2nd analyses differ from the first one? 

β values constitute the ratio of all methylated probe intensities over the total signal 

intensities (methylated and unmethylated) and have a range between 0 and 1. β values are 

an approximation of the percentage of methylation (0-100%). Many ΔBeta thresholds are 

described in the literature and the most frequently used for whole blood studies in 

autoimmune diseases are 0.05 (5% difference) and 0.1 (10% difference). However, extreme 

values of 0.03 and 0.4 were also reported (Ref 1 et 2). 



For example, Braekke Norheim et al. (2016) studied the methylation status in whole blood of 

48 pSS patients with high (n=24) and low (n=24) degree of fatigue. They choose a false 

discovery rate–corrected P < 0.05 and a mean difference in DNA methylation level between 

the two patient groups of at least 3% (ΔBeta threshold of 0.03) (Ref 1). Imgenberg-Kreuz, et 

al (2016) analysed whole blood from 100 pSS patients and 400 healthy volunteers (HV). They 

fixed a Bonferroni adjusted p-value of 1.3 10-7 in a first step and in a second step, they 

focused the DMPs with an absolute ΔBeta of 0.1 (Ref 3). In 2018, the same group (Ref 4) 

compared whole blood methylation between 548 SLE patients and 587 HV. They applied a 

Bonferroni corrected p-value of 1.3 10-7 and an absolute ΔBeta threshold of 0.05. Yeung et 

al. (2017), compared whole blood methylation between 12 SLE patients and 10 healthy 

controls They applied an adjusted p-value of 0.05 and an absolute ΔBeta threshold of 0.1 

(Ref 5). Finally, Turell et al. (2020) analysed methylation in whole blood between 189 pSS 

patients and 220 HV. They applied 2 steps of analysis. In the first step, they applied only a 

Bonferoni corrected threshold of p-value < 6.4 10-8. In the second step, they described the 

top 10 DMPs with an absolute ΔBeta > 0.1 and founded genes associated with IFN signature 

(Ref 6). 

In view of what was described in the literature, we applied a ΔBeta threshold of 0.075. We 

assume that a ΔBeta threshold of 0.05 is too low and that we could have missed DMPs when 

applying a ΔBeta threshold of 0.1 in first intention. To illustrate this, we have tested 

thresholds of 0.05, 0.75, 0.1 and 0.15. The table below represents the numbers of DMPs and 

genes obtained with these different thresholds:  

  

  C1 C2 C3 C4 

abs(ΔBeta) >0.05 DMPs 1508 7 759 17150 

 Genes 918 6 482 6256 

abs(ΔBeta) >0.075 DMPs 145 2 96 8445 

  Genes 87 2 56 4711 

abs(ΔBeta) >0.1 DMPs 37 0 38 4575 

  Genes 24 0 26 2270 

abs(ΔBeta) >0.15 DMPs 13 0 17 1194 

  Genes 10 0 11 761 

  

If we had applied a ΔBeta threshold of 0.05, we would have obtained 17150 DMPs 

corresponding to 6256 genes in C4 and it would have been very difficult to interpret the 

signification of these defects in methylation. If we had applied a ΔBeta threshold of 0.1 in a 

first step, we could not have observed the defect in methylation of C2 which is lower than in 

the other clusters. However, the reviewer's comment is relevant because when applying a 

ΔBeta threshold of 0.05, we move in C2 from 2 (with a ΔBeta threshold of 0.075) to 7 DMPs. 



These 7 DMPs were also present in the three other clusters and corresponded to 5 genes 

involved in the IFN signature (IFIT1, IFITM1, NLRC5, IFI44L and MX1 that presents two 

DMPs). With a ΔBeta threshold of 0.075, only NLRC5 and MX1 were found. Consequently, 

the ΔBeta threshold of 0.05 reinforce the message already described in our manuscript that 

the methylation anomaly of genes associated with the IFN pathway is also present in C2.  

 The ΔBeta cut-off at 0.075 identified 8445 DMPs corresponding to 4711 hypo-and hyper-

methylated genes in C4, showing an aberrant methylation status of this cluster. The ΔBeta 

cut-off at 0.15 was basically used in a second step to identify the most robust and significant 

signature of hypo-and hyper-methylated genes in C4. Performing the analysis on so many 

DMPs would have led to a less relevant analysis of the genes involved. Finally, this 2-step 

analysis is similar to Imgenberg-Kreuz et al. (2018) (Ref 3) and permit to conclude that the 

default of methylation in C4 concerned mainly the neutrophil degranulation pathway which 

is a specificity of this cluster. 
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primary Sjögren’s syndrome. Rheumatology, 55, 6, 1074-1082 (2016). 
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The clarity of the figures and supplemental figures is improved. Clusters are more accurately 

summarized. Additional supplemental data are provided. All other concerns have been well-addressed. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

This is a high-quality molecular profiling study carried out in pSS. The issues raised in my review have 

been clearly addressed in the revision. 

 

The authors have analyzed the association between serum IFN-alpha and each domain of ESSDAI and 

have tried to group their patients according to the symptom-based stratification model proposed in a 

previous study. I am glad to know that the authors’ group is involved in the IMI2 European project 

and definitely would like to know more about the performance of this predictive model in other cohorts 

in the future. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors have revised the manuscript and made several clarifications. I am satisfied with the 

revisions and have no further suggestions. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

The authors have answered all my comments. I would recommend one thing to the authors, namely 

to add the response to my question #2 regarding the methylation thresholds as a supplementary note 

to the manuscript as it strengthens the message. 



We would like to thank the associate editor of Nature Communications for considering our 
manuscript entitled “A new molecular classification to drive precision treatment strategies in 
primary Sjögren’s syndrome” for publication in Nature Communications and for the 
opportunity to resubmit a revised version for further consideration. 

We have made the necessary changes and addressed the issues raised by the reviewers and 
would like to highlight in a point-by-point manner the changes made and how raised issues 
and concerns were addressed. 

 
REVIEWERS' COMMENTS 

 
Reviewer #1 (Remarks to the Author): 

The clarity of the figures and supplemental figures is improved. Clusters are more 
accurately summarized. Additional supplemental data are provided. All other concerns 
have been well-addressed. 

We thank the reviewer for his comments which improved the quality of the manuscript. 
 
Reviewer #2 (Remarks to the Author): 

This is a high-quality molecular profiling study carried out in pSS. The issues raised in my 
review have been clearly addressed in the revision. 

The authors have analyzed the association between serum IFN-alpha and each domain of 
ESSDAI and have tried to group their patients according to the symptom-based 
stratification model proposed in a previous study. I am glad to know that the authors’ 
group is involved in the IMI2 European project and definitely would like to know more 
about the performance of this predictive model in other cohorts in the future. 

We thank the reviewer for his comments which improved the quality of the manuscript. 
 
Reviewer #3 (Remarks to the Author): 

The authors have revised the manuscript and made several clarifications. I am satisfied 
with the revisions and have no further suggestions. 

We thank the reviewer for his comments which improved the quality of the manuscript. 
 
Reviewer #4 (Remarks to the Author): 

The authors have answered all my comments. I would recommend one thing to the 
authors, namely to add the response to my question #2 regarding the methylation 
thresholds as a supplementary note to the manuscript as it strengthens the message. 

We thank the reviewer for his comments which improved the quality of the manuscript. The 
response to the reviewer previous question#2 has now been added to the manuscript both 
in the Methods and Results sections (Supplementary Figure 6).  


